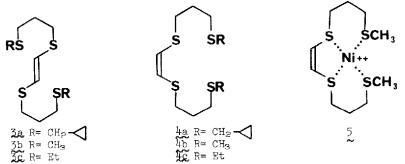

SULFONIUM YLIDE DIMERIZATION: A NOVEL ROUTE TO UNSATURATED TETRADENTATE SULFUR LIGANDS

S. R. Wilson[#] and R. S. Myers


Department of Chemistry, Indiana University, Bloomington, Indiana 47401 (Received in USA 26 July 1976; received in UK for publication 9 August 1976)

In connection with another study, we had occasion to prepare the ylide la from 1- \sim cyclopropylcarbinyl-1,3-dithianium tetrafluroborate 2a. Although sulfonium salts 2b-c

have been reported previously, there have been no reports in the literature concerning the corresponding ylides of dithiane other than allylic ylides which undergo [2,3] sigmatropic rearrangement.³ We have found that the ylides la-c undergo a facile dimerization yielding bis-thioethylenes 3a-c [NMR: 6.22 $\delta(2H-s)$] and 4a-c [NMR: 6.12 $\delta(2H-s)$] in good yields.

(Table I.) The <u>cis</u> and <u>trans</u> isomers are easily separable by chromatography on silica gel (4% ether/petroleum ether; $Rf_{cis} = 0.08$, $Rf_{trans} = 0.13$). <u>Cis</u>-isomer 4b readily forms the red nickel complex 5 (Ni(ClO₄)₂/CH₃NO₂). Although many saturated tetradentate sulfur ligands have been reported only a few unsaturated ligands such as 5 have been prepared by alkylation of nickel

bisdithienes. The unsaturated sulfur complexes are of interest because of their potentially useful electron transfer properties. Although dimers 3 and 4 were usually prepared by treatment of the corresponding sulfonium salt with n-butyl lithium in THF at -78° , followed

		Table I			
 Salt	R	Х	Ratio 3/4 (NMR)	% yield	~ ~
2a	СН2-	BF_4	40/60	59	
భి	CH3	I	28/72	78	3, 2, 18 , 2, 2, 18 , 18 , 18 , 18 , 18 ,
2c	Et	I	34/66	79	~

by warming to room temperature, the reaction also proceeds using NaH/DMF at room temperature making preparation of sizable quantities of 3 and 4 economical.

The mechanism of the dimerization reaction is now considered. α -Cleavage of sulfonium ylides yielding carbene-like dimers has been noted before⁷ in acyclic cases. Notably, Johnson⁸ and coworkers have reported that diphenyl sulfonium benzylide decomposes to give 78% <u>cis</u> and <u>trans</u>-stilbene. Thus, an attractive mechanism for the facile dimerization involves the intermediacy of a novel thiocarbene 6.⁹ However, when the dimerization is carried out in the presence of cyclohexene no cyclopropane could be detected.

Acknowledgment: We would like to thank the Department of Chemistry and the Indiana University Research Fund for financial support.

REFERENCES

- 1. All new compounds possessed satisfactory analytical and spectra data.
- 2. H. Bohme and W. Krack, Liebigs Ann. Chem., 758, 143 (1972).
- 3. E. Hunt and B. Lythgoe, Chem. Commun., 757 (1972).
- 4. W. Rosen and D.H. Busch, <u>J. Amer. Chem. Soc</u>., 91, 4694 (1969).
- 5. G.N. Schrauzer, R.K.Y. Ho, and R.P. Murillo, J. Amer. Chem. Soc., 92, 3508 (1970).
- 6. G.N. Schrauzer, Advances in Chemistry Series, 110, 73 (1972).
- 7. Earlier work in this area has been summarized: A.W. Johnson, "Yhide Chemistry," Academic Press, N.Y. 1966, p. 319 ff. Cleavage of sulfur yhides to carbenes is still open to question, however: See B.M. Trost and L.S. Melvin, Jr., "Sulfur Yhides," Academic Press, N.Y., 1975, p. 48.
- 8. A.W. Johnson, V.J. Hruby, and J.L. Williams, J. Amer. Chem. Soc., 86, 918 (1964).
- Thiocarbenes are well known and have been reviewed: W. Kirmse, "Carbene Chemistry," Academic Press, N.Y., 1964, pp. 209-211.